SECTION 'C' $4 \times 10 = 40$ Long Answer questions (Word limit 400-450 words.)

Long Answer questions (word limit 400-450 words.)

Q.1. Show that the product space $X = \pi\{X_i = i \in I\}$ is regular if and only if each coordinate space is regular.

OR

If (X,T) is the product space of topological spaces (X_1,T_1) and (X_2,T_2) then the projection mapping π_1 and π_2 are continuous and open.

Q.2. State and prove Nagata Smirnov metrization theorem.

OR

State and prove Stone's theorem.

Q.3. Show that a topological space is compact if and only if every ultrafilter in it is convergent.

OR

Let β be a family of non empty subsets of a set *X*. Then there exists a filter on *X* having β as a base if and only if β has the property that for any $B_1, B_2 \in \beta$ there exists $B_3 \in \beta$ such that $B_1 \cap B_2 \supseteq B_3$.

Q.4. State and prove fundamental theorem of algebra.

OR

- (a) Define simply connected space. Show that in a simply connected space *X* any two paths having the same initial and final points are path homotopic.
- (b) Show that $\pi_1(X, x_0)$ is a group.

-----XXX-----

[1]

ROLL NO.....

MATH. 203/21

II SEMESTER EXAMINATION, 2021

M. Sc. (MATHEMATICS)

PAPER-III

GENERAL & ALGEBRAIC TOPOLOGY

TIME: 3 HOURS	MAX 80
	MIN 16

Note: The question paper consists of three sections A, B & C. All questions are compulsory. Section A- Attempt all multiple choice questions. Section B- Attempt one question from each unit. Section C- Attempt one question from each unit.

SECTION 'A' MCQ (Multiple choice questions)

1. If $X = \pi\{X_i : i \in I\}$ and $\pi_i : X \to X_i$ defined by $\pi_i(n) = x_i \forall x \in X$

such mapping is called -

- (a) Bijective function (b) Homeomorphism
- (c) Projection function (d) None of these
- 2. Choose the correct statement
 - (a) Product of completely regular space is regular space is regular
 - (b) Product space is connected if and only if each coordinate space is connected
 - (c) Product of locally connected if and only if each coordinate space is locally connected and all except finitely many of them are connected.
 - (d) All are true

MATH. 203/21

 $2 \times 8 = 16$

- 3. A mapping is called an embedding if -
 - (a) It is one onto (b) It is continuous
 - (c) It is open (d) All are true
- **4.** Choose correct answer Every Tychonoff space X can be embedded as a subspace of -
 - (a) Rectangle (b) Cube
 - (c) Cuboide (d) Cone
- 5. Choose correct statement .
 - (a) Every filter is an ultrafilter
 - (b) Every ultrafilter is filter
 - (c) Both (a) and (b)
 - (d) None of these
- 6. The limit of a net is unique in -
 - (a) Compact space (b) Connected space
 - (c) Housdroff space (d) Regular space
- 7. The relation of homotopy is -
 - (a) A partial order relation
 - (b) An equivalence relation
 - (c) A binary relation
 - (d) A symmetric relation
- 8. Which function denote covering map -

(a) $f(x, y) = (e^{2\pi i x}, e^{2\pi i y})$ (b) $f(x, y) = \cos 2\pi x, \sin 2\pi y$ (c) Both (a) and (b) (d) None of these

SECTION 'B' $4 \times 6 = 24$ Short Answer Type Questions (Word limit 200-250 words.)

Q.1. Prove that product space $X_1 \times X_2$ is connected if and only if both X_1 and X_2 are connected.

OR

Prove that a product is first countable if and only if each coordinate space is first countable and all except finitely many coordinate spaces are indiscrete.

Q.2. Show that the topological product of a finite family of metrizable space is metrizable.

OR

Show that embedding mappings are open.

Q.3. Let X, Y are topological spaces, $x \in y$ and $f: X \to Y$ is a function, then f is continuous at x_0 if and only if whenever a net s converges to x_0 in X the *f* os net converges to $f(x_0)$ in Y.

OR

Let $\{F_i : i \in I\}$ be a non empty family of filter on a non empty set *X*. Then the set $\cap \{F_i : i \in f\}$ is a filter on *X*.

Q.4. Let f_1, f_2, g_1 and g_2 be paths such that $f_1 \sim g_1$ and $f_2 \sim g_2$. If exists then $g_1 * g_2$ exists and $f_1 * f_2 \sim g_1 * g_2$.

OR

Define covering map. Show that a covering map is open. **MATH. 203/21**

[3]